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Santos1,d and José Manoel Balthazar,e
1Instituto Tecnológico de Aeronáutica, ITA, Brazil.

Abstract. The interest for multirotor aerial vehicles (MAVs) is currently growing due to their low cost, high
manoeuvrability, simplified mechanics, capability to perform vertical take-off and landing as well as hovering
flight. These characteristics make them a promising technology suitable for applications such as suveillance of
indoor and urban environments. The present work faces the problem of controlling the attitude of a MAV by
means of a linear feedback control which guarantees asymptotic stability when controlling a nonlinear dynamics.
The simulations show the effectiveness of the method.

1 Introduction

Multirotor Aerial Vehicles (MAVs) have motivated many
researches in different fields of knowledge such as sensors
fusion [3], computer vision [7] and control strategies [6].
Although there is a massive amount of concluded and on-
going research works on MAVs, the design of control laws
for such vehicles still has challenges to be overcome. Most
of those challenges are related to design control laws that
guarantee asymptotic stability, mostly because this system
is nonlinear.

Reference [2] presents two nonlinear control techniques,
backstepping and sliding mode, in order to control the atti-
tude of the MAV. On the other hand, reference [4] utilizes
a nonlinear H∞ controller to stabilize the rotational move-
ments. Both strategies have a high degree of complexity.
Therefore, it would be interesting to design a linear feed-
back control which also guarantees stability for a nonlinear
system.

The Linear Quadratic Regulator (LQR) is an usual con-
trol strategy applied to MAVs [1], which requires a linear
design model. Such linear model does not take into ac-
count the nonlinear phenomena that are present in the real
operation of these vehicles. However, for a more effective
control law, nonlinearities have to be considered in order
to avoid unstable regions of operation. One of the nonlin-
earities included in the motion equations is the gyroscopic
effects which come from the rotation of the rigid body and
the four propellers.

This paper uses the [5] theorem to stabilize the atti-
tude of a MAV. This theorem showed that is possible to
construct a linear feedback control law for a nonlinear dy-
namics that is globally asymptotically stable.
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2 MAV Modeling

This section presents the equations of motion of a multi-
rotor aerial vehicle (MAV), considering all the relevant ef-
fects necessary to be accounted for in ground-thruth model
for simulation-based evaluation of control laws. We start
with preliminary definitions in Subsection 2.1, then we present
the rotor dynamics in 2.2 and the MAV rotational dynamics
in 2.3.

2.1 Preliminary definitions

We define two Cartesian coordinate systems (CCS) as il-
lustrated in Figure 1. The body CCS, S B , {XB,YB,ZB} is
attached to the vehicle’s body with the origin at the vehi-
cle’s center of mass (CM), the XB axis pointing forward,
the ZB axis pointing upward, perpendicular to the plane of
the rotors, and the YB axis completing a dextrogeous frame.
The CCS, S G = {XG,YG,ZG} is fixed to the ground at a
known point O, with the ZG axis pointing upward, aligned
with the local vertical.
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Fig. 1. The Cartesian coordinate systems (CCS). S B =

{XB,YB,ZB} is the body CCS and S G = {XG,YG,ZG} is the ground
CCS.
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2.2 Rotor dynamics

The thrust force fi and reaction torque τi produced by each
individual rotor are modeled, respectively, by the aerody-
namic models

fi = k fω
2
i , (1)

τi = kτω2
i , (2)

for i = 1, ..., 4, where k f is the force coefficient, kτ is the
torque coefficient, and ωi is the rotation speed of the ith
rotor (positive in courterclockwise direction), whose dy-
namics can be modeled by the following first-order linear
model:

ω̇i = −
1
τω
ωi +

kω
τω
ω̄i (3)

where ω̄i ∈ [0, ω̄max] is the rotation speed command for the
ith rotor, kω is the rotation coefficient, and τω is rotor time
constant.

2.3 Resultant control thrust and torque

Although the formulation given here could be generalized
to any multirotor vehicle configuration, for illustration pur-
pose, we consider a quadrotor configuration with the lon-
gitudinal axis XB pointing between rotor 1 and rotor 2, and
with 45 degree of separation angle between adjacent arms;
we call it the ”x” configuration. Moreover, we consider that
rotor 1 and rotor 3 rotate in clockwise direction, while ro-
tor 2 and rotor 4 rotate in counterclockwise direction. For
the aforementioned configuration, one can show that the
relationship between the individual rotor thrusts fi and the
resultant thrust magnitude and torque vector is given by[

Fc

Tc

]
= Γf, (4)

with f ,
[

f1 f2 f3 f4
]T

and

Γ ,


1 1 1 1

l/
√

2 −l/
√

2 −l/
√

2 l/
√

2
−l/
√

2 −l/
√

2 l/
√

2 l/
√

2
kτ/k f −kτ/k f kτ/k f −kτ/k f

 , (5)

where l is the length of each vehicle’s arm. The superscript
c in Eq. (5) stands for the control command defined by the
operator and is used to distinguish from the other sources
of force and torque that will be presented soon.

By inverting Eq. (5), one can compute the command
f̄ ,
[

f̄1 f̄2 f̄3 f̄4
]T

as

f̄ = Ξ

[
F̄c

T̄c

]
, (6)

where Ξ , Γ−1, F̄c is the thrust magnitude command, and
T̄c is the control torque command.

2.4 Rotational motion

Representing the attitude using the Euler angles α ,
[
φ θ ψ

]T
in the rotation sequence 1-2-3, we have the following rota-
tional kinematics equations:

α̇ = AΩ (7)

where Ω ,
[
Ωx Ωy Ωz

]T
is the S B representation of the

vehicle’s angular velocity w.r.t. S G and

A ,

 cosψ/ cos θ − sin φ/ cos θ 0
sinψ cosψ 0

− cosψ sin θ/ cos θ sinψ sin θ/ cos θ 1

 (8)

Assume that the vechile has a rigid structure and S G is
an inertial frame. Considering the existence of gyroscopic
effects, due to the rotors, and disturbance torques, and us-
ing the Newton-Euler formulation, one can model the ro-
tational dynamics of the MAV by

Ω̇ = J−1(JΩ)×Ω+ IrJ−1Ω×e3

4∑
i=1

(−1)iωi +J−1Tc +J−1Td

(9)
where Tc and Td are the S B representations of the resultant
control torque and disturbance torque, respectively, e3 ,
[0 0 1]T, Ir is the moment of inertia of the rotors w.r.t. the
rotation axis, and J is the body inertia matrix. Consider that
the vehicle has a symmetric structure with known mass m
and inertia matrix in S B

J =

 Jx 0 0
0 Jy 0
0 0 Jz

 . (10)

This paper makes use of the AR Drone 2 parameters in
order to emulate a real plataform. The values can be seen
in Table 1.

3 State-space models

This section presents the nonlinear state-space model for
rotation (Section 2). This model will be adopted for de-
signing control laws by using the Rafikov and Balthazar’s
theorem. Firstly, note that the dynamics in Eq. (7) and (9)
can be formulated as

ẋ(t) = Ax(t) + h(x) + Bu(t) (11)

where x ∈ Rn is the state vector, u ∈ Rm is the control
inputs, A ∈ Rn×n and B ∈ Rn×m are constant real matrices,
and h(x) ∈ Rn is a vector whose elements are nonlinear
functions of x.

3.1 Rotational State-Space Model

The rotational MAV state-space model is given by

x ,
[
φ θ ψ Ωx Ωy Ωz

]T
∈ R6, (12)

u , Tc ∈ R3, (13)

and

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(14)
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Table 1. Parameters of AR Drone 2.

Variables Values Unit
Mass of AR Drone 2, m 0.429 kg

Acceleration of gravity, g 9.80665 m/s2

Arm lenght, l 0.1785 m
Moment of inertia for x-axis, Jx 2.238 × 10−3 kg.m2

Moment of inertia for y-axis, Jy 2.986 × 10−3 kg.m2

Moment of inertia for z-axis, Jz 4.804 × 10−3 kg.m2

Moment of inertia of each rotor, Ir 2.030 × 10−5 kg.m2

Force coefficient k f 8.050 × 10−6 N/(rad/s)2

Torque coefficient, kτ 2.423 × 10−7 N.m/(rad/s)2

Time constant, τ 4.718 × 10−3 s
Maximum speed of the motor, ωmax 1047 rad/s

B =



0 0 0
0 0 0
0 0 0
1
Jx

0 0
0 1

Jy
0

0 0 1
Jz


(15)

h(x) =



1
2 (−ψ2Ωx + θ2Ωx) − φΩy

ψΩx −
ψ2Ωy

2
−θΩx + ψθΩy

(Jy−Jz)
Jx

ΩyΩz −
IrΩy

Jx
(ω1 − ω2 + ω3 − ω4)

(Jz−Jx)
Jy

ΩxΩz + IrΩx
Jy

(ω1 − ω2 + ω3 − ω4)
(Jx−Jy)

Jz
ΩxΩy


(16)

4 Control Design

In this section, we present a control strategy to drive the
MAV’s nonlinear dynamics from a certain initial condition
to a desired state. Following the control method proposed
by [5], we formulate an optimal control problem that, given
the nonlinear dynamics in Eq. (11), aims at minimizing the
following LQR-like cost function:

J =

∫ ∞
0

(l(x) + uT Ru)dt (17)

where R ∈ Rm×m is a positive definite matrix and l(x) ∈ R
is a function related to the weights of the dynamical states
over time. Function l(x) will be selected as follows to ac-
count for the nonlinear terms in the dynamical model.

Propostion: Let l(x) be

l(x) = xT Qx − h(x)T Px − xT Ph(x) (18)

where Q ∈ Rn×n and P ∈ Rn×n are real symmetric posi-
tive definite matrices and P is the solution of the matrix
algebraic Riccati equation

PA + AT P − PBR−1BT P + Q = 0. (19)

Then, as long as l(x) is positive definite, the linear feedback
control law

u = −R−1BT Px (20)

is optimal in order to transfer the nonlinear system in Eq.
(2) from an initial condition x(0) to the origin while min-
imizing the cost function in Eq (3). Additionally, the con-
trolled system is locally asymptotically stable in the neigh-
borhood Γ0 ⊂ Γ, Γ ⊂ Rn, of the origin if x(0) ∈ Γ0. If
Γ = Rn, then the controlled system is globally asymptoti-
cally stable.

Proof: See Rafikov and Balthazar [5].

5 Simulation Tests

The simulation uses three-degree-of-freedom nonlinear equa-
tions of the attitude of the MAV and are implemented in
Matlab/Simulink. In this section, numerical simulations are
presented to verify the effectiveness of the proposed method.
In these numerical simulations, the initial condition x(0) is
given by

x(0) = [30 20 10 0 0 0]T. (21)

Choose

Q =



17 0 0 0 0 0
0 17 0 0 0 0
0 0 17 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(22)

and

R =

 1 0 0
0 1 0
0 0 1

 (23)

we obtain

P =



4.16 0 0 0.01 0 0
0 4.17 0 0 0.01 0
0 0 4.20 0 0 0.02

0.01 0 0 0.002 0 0
0 0.01 0 0 0.003 0
0 0 0.02 0 0 0.01


(24)

by solving the Riccati Eq. (19). Then, from Eq. (20) one
obtains
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u =

4.123 0 0 1.01 0 0
0 4.123 0 0 1.012 0
0 0 4.12 0 0 1.02

 x (25)

The behavior of the attitude angles can be seen in Fig-
ure 2. The simulations show that the function l(x) calcu-
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Fig. 2. Euler angles over time.

lated for the attitude dynamics of the MAV is positive, as
illustrated in Figure 3, which guarantees asymptotic stabil-
ity according to Rafikov and Balthazar’s theorem.
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Fig. 3. Positive function l(t), calculated for the attitude dynamics
of the MAV.

The control signals, presented in Figure 4, lie within
the acceptable range for a real MAV, i.e. ±2.28 N.m.

6 Conclusion

This paper have presented the attitude control of a MAV by
designing the linear feedback controller. The linear feed-
back control problem was formulated under the optimal
control theory viewpoint. Asymptotic stability of the closed-
loop nonlinear system is guaranteed by means of a Lya-
punov function as presented in [5].
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