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Abstract

The present paper proposes a visual-inertial attitude estimator for multirotor aerial vehicles

(MAV). The vehicle is assumed to be equipped with a 3-axis rate-gyro and a downward-pointing

camera, both rigidly fixed on its structure. The method is based on the REQUEST algorithm, which

is a well-known solution to the problem of attitude determination form vector measurements. Here

the camera provides the vector measurements defined as unit vectors pointing from the camera

optical center to known landmarks. The method is evaluated via Monte Carlo simulations which

shows its perfomance for different number of visible landmarks and different values of a fadding

factor parameter of the method.

1 Introduction

In the last fifteen years we saw a fast development of the research on automatic control of micro aerial

vehicles (MAV). For example, see the paper [1] and the video [2]. Nevertheless, in order to realize

acrobatic flights like those described in the afore-cited works, it was crucial to adopt an expensive

tracking system for pose estimation using stationary infrared cameras [3]. In other words, there is still

room for research and technological development in navigation (estimation of position and velocity)

and attitude determination of MAVs, aiming at improving their performance and reliability, specially

for operations in urban areas and indoors.

Motivated by applications in the aerospace area, the research on attitude determination (AD) has

been developing since the 1950 decade and remain active in the current days [4]. More recently, the

literature on MAV has become concerned with AD, but we claim that it can be still enriched with the

formalism, notations, and methods inherited from the aerospace literature.

The well-known Wahba Problem [5], published in 1966, first formalized the attitude estimation

from pairs of vector measurements, as a constrained least-squares problem. Until the 2000 decade,

many methods, considered as the seminal ones, appeared for solving this problem; they can be classified

into: batch methods [6], and recursive methods [7, 8, 10–13, 15, 16, 19]. The reference [9] re-visits seven

different methods of solution to the Wahba Problem.

Regarding the attitude representation, the attitude quaternion is the prefered one. This is because

the quaternion has the minimal number of parameters (four) for a global parameterization of the 3D

attitude without singularity [20]. Moreover, it presents a linear kinematics equation [17], and therefore

allows a good computational efficiency in attitude simulation.

In particular, a batch quaternion estimator named QUEST [6] became very popular in the aerospace

community (see [18], p. 189). As a batch method, the QUEST does not use vector measurements

taken in the past to estimate the attitude at the current time. Therefore, to completely estimate
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the 3D attitude, at least two vector measurements are required at each time instant. For attitude

determination of MAVs, the two conventional vectors are the direction of the gravity acceleration

(measured by a 3-axis accelerometer) and the direction of the local magnetic field (measured by a

3-axis magnetometer) [25, 26].

Despite of its popularity, after the publication of EKF-like methods [8, 11–13] and improvements in

onboard computer technology, the QUEST became obsolete for not considering all the measurement

history to estimate the quaternion at the current time. Bar-Itzhack [10] proposed a recursive version

of the QUEST method, which was named REQUEST. It is worth mentioning that different from

the batch methods, the recursive ones can estimate the attitude using only one vector measurement

at a time, since this vector varies sufficiently throughout the vehicle’s motion. However, the use of

redundant vectors improve the estimator both in performance and reliability. The REQUEST method

has a fadding factor ρ to deal with the rate-gyro noise in a suboptimal manner. Almost ten years

later, Choukroun [14] proposed the Optimal-REQUEST algorithm, which improved the REQUEST

by formulating an optimal factor ρ related to the covariances of the measurement noises. However,

we argue that it is quite easy to tune the parameter ρ in the REQUEST method by trial and error,

since it is scalar and it is the unique parameter to adjust.

The MAV literature has been intensively reporting the use of camera systems onboard MAVs for

navigation and SLAM. Although some of these works include attitude in their estimation scheme, most

of them are mainly concerned with position and velocity estimation [23]. The paper [22] presents a

clear and extensive review about moviment estimation from camera measurements, by several distinct

approaches, starting from horizon-based methods and passing through vanishing points, optical flow,

and methods based on stereo camera systems.

The present paper investigates the problem of attitude determination of MAVs, using a strapdown

downward-pointing camera and a 3-axis rate-gyro. A landmark map of the flight terrain is assumed

to be available. The attitude estimation method adopted here is the REQUEST [10]. The main con-

tribution of this work is the formulation of vector measurements (required not only in the REQUEST,

but in any Wahba-based method) as unit vectors given the direction of landmarks with respect to

the optical center of the camera. The method is evaluated by Monte Carlo simulations, showing that

it is a good alternative to the attitude estimation based on magnetometers and acceleromenters and

revealing its performance against the number of visible landmarks. The remaining text is organized in

the following manner. Section 2 formally defines the AD problem, while Section 3 presents a solution

to it. Section 4 presents the Monte Carlo simulation results. Finally, Section 5 presents the concluding

remarks.

2 Problem Statement

Consider the MAV and the two Cartesian Coordinate Systems (CCS) illustrated in Fig. 1. The body

CCS SB , {x̂B, ŷB, ẑB} is attached to the vehicle structure, at its center of mass (denoted by P ) and

has its z-axis, ẑB, perpendicular to the rotor plane. The reference CCS SR , {x̂R, ŷR, ẑR} is fixed on

the ground at point O and has its z-axis, ẑR, aligned with the local vertical. Fig. 1 also illustrates a

set of q landmarks positioned at the points P1, P2, ..., Pq.

Assume that the camera is set with its optical center at P and there is a 3-axis rate-gyro installed

parallel to SB. Define the unit vectors ŝi which describe the direction from P to Pi, for i = 1, ..., q.

Denote the algebraic representation of ŝ in SB and SR by bi ∈ R3 and ri ∈ R3, respectively. The
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Figure 1: The Cartesian coordinate systems, the multirotor vehicle, and the flight environment.

representations bi and ri are related to each other by bi = Dri, where D ∈ SO(3) is the attitude

matrix of SB w.r.t. SR.

Assume that the MAV position P and the landmark positions P1, P2, ..., Pq w.r.t. SR are known.

Assume also that, at an arbitrary sampling instant k, only a number n < q of landmarks is visible.

Note that as the vehicle moves, the set of visible landmarks is changing. Denote the indices of such

visible landmarks by i1, i2, ..., in. Based on the above assumptions, define the time sequence of pairs

of vector measurements as:

V (k) ,
{(

b̌i1 (k) , ři1 (k)
)
,
(
b̌i2 (k) , ři2 (k)

)
, ...,

(
b̌in (k) , řin (k)

)}
, (1)

where b̌i and ři, ∀i = i1, ..., in, are measures at instant k of bi and ri, respectively. Note that the

number of vector measurement pairs in V(k) varies over time k.

Now, in order to define a measurement model (relating the vector measurements with the desired

attitude), consider just one arbitrary vector measurement pair
(
b̌i(k), ři(k)

)
∈ V(k), for some i ∈

{i1, ..., in}. The measurement model used here is given by

b̌i(k) = D(q(k))ři(k) + δbi(k), (2)

where {δbi(k)} is a zero-mean white Gaussian sequence with covariance Ri(k); and q(k) ∈ R4 is the

attitude quaternion which parameterizes D at instant k. The expression D(q) denotes the attitude

matrix of SB w.r.t. SR corresponding to q. It is given by [18]

D(q(k)) = (q2 − eTe)I3 + 2eeT − 2q[e×], (3)
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where [e×] denotes the cross-product matrix of e , [ e1 e2 e3 ]T,

[e×] ,

 0 −e3 e2

e3 0 −e1
−e2 e1 0

 . (4)

On the other hand, the attitude kinematics model can be expressed as [17]

q(k + 1) = Φ(k)q(k), (5)

with

Φ(k) , exp

{
1

2

[
−[ω(k)×] ω(k)

−ω(k)T 01×3

]
∆t

}
, (6)

where ω(k) is the SB representation of the angular velocity of SB w.r.t. SR and ∆t is the sampling

period.

Finally, let the rate-gyro measurement ω̌(k) ∈ R3 at instant k be modeled by

ω̌(k) = ω(k) + δω(k), (7)

where {δω(k)} ∈ R3 is a zero-mean white Gaussian sequence with covariance Q(k).

The main problem of the present paper is to recursively estimate q(k) using the kinematic model

(5), the measurement models (2) and (7), the sequence of rate-gyro measurements {ω̌(1), ω̌(2), ..., ω̌(k)},
and the sequence of vector measurements {V(1),V(2), ...,V(k)}.

3 Problem Solution

The present section proposes a solution to the attitude determination problem defined in Section 2

using the REQUEST algorithm [10]. First, the Wahba problem as well as the QUEST method are

reviewed.

3.1 The Wahba Problem and the QUEST Algorithm

The Wahba problem for computing the quaternion estimate q̂(k) at instant k can be stated as the

minimization of

J(q(k)) =
1

2

n∑
i=1

ai‖b̌i(k)−D(q(k))ři(k)‖2, (8)

subject to ‖q(k)‖ = 1, where
(
b̌i(k), ři(k)

)
is the pair of vector measurements (defined in Section

2), D(q(k)) is the attitude matrix corresponding to the quaternion q(k) (see equation (3)), ai is a

positive weight associated with the ith measurement pair, and n is the number of vector measurements

available at instant k.

The minimization problem of equation (8) can be replaced by the maximization of [6]

G(q(k)) = q(k)TK(k)q(k), (9)
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where

K(k) ,

[
S(k)− σ(k)I3 z(k)

z(k)T σ(k)

]
∈ R4×4, (10)

S(k) , B(k) + B(k)T ∈ R3×3, (11)

σ(k) ,
1

m(k)

n∑
i=1

aib̌i(k)Tři(k) ∈ R, (12)

B(k) ,
1

m(k)

n∑
i=1

aib̌i(k)ři(k)T ∈ R3×3, (13)

z(k) ,
1

m(k)

n∑
i=1

ai
[
b̌i(k)×

]
ři(k) ∈ R3, (14)

and

m(k) ,
n∑
i=1

ai. (15)

The solution q̂(k) to the maximization ofG(q(k)) in (9) is given by following eigenvalue/eigenvector

equation:

K(k)q̂(k) = λq̂(k), (16)

where λ is the maximum eigenvalue of K(k). In other words, the solution q̂(k) is the eigenvector

corresponding to the maximum eigenvalue of K(k). Reference [6] presents an efficient algorithm for

solving the above eigenvalue/eigenvector problem; this is the well-known QUEST algorithm. The

same paper also shows that λ is close to 1 (for noise-free measurements, it is exactly 1). In short,

the cited work shows that the optimal Gibbs vector (see [17], for information about different attitude

parameterizations) is given by

p(k) = [(λ+ σ(k)) I3 − S(k)]−1 z(k), (17)

and the corresponding quaternion is given by

q̂(k) =
1√

(1 + p(k)Tp(k))

[
p(k)

1

]
. (18)

3.2 The REQUEST Algorithm

The formulation presented here is based on the original work [10]. Particularly, in the present work,

since the visible landmarks can change throughout the MAV motion, we consider that a variable

number n(k) of vector measurements is taken at the kth algorithm iteration.

Let us denote by Kj|k the QUEST K matrix at instant j, but constructed with vector measurements

taken up to instant k. Assume that K(k|k) is given at instant k. According to the REQUEST method,

the prediction of the K matrix is given by

K(k + 1|k) = Φ̌(k)K(k|k)Φ̌(k)T, (19)

where Φ̌(k) is the quaternion transition matrix with the same form of (6), but computed with the

rate-gyro measurement ω̌(k) instead of the true angular velocity ω(k).

On the other hand, to update K with new pairs of vector measurements taken at instant k + 1,
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one can use

K(k + 1|k + 1) =
ρm(k)

ρm(k) + δm(k + 1)
K(k + 1|k) +

1

ρm(k) + δm(k + 1)
δK(k + 1), (20)

where 0 ≤ ρ ≤ 1 is a fadding factor tuned to reduce the effect of rate-gyro measurement errors on the

estimation of K and

m(k + 1) = m(k) + δm(k + 1), (21)

δm(k + 1) =

n(k)∑
i=1

ai, (22)

δK(k + 1) ,

[
δS(k + 1)− δσ(k + 1)I3 δz(k + 1)

δz(k + 1)T δσ(k + 1)

]
, (23)

δS(k + 1) , δB(k + 1) + δB(k + 1)T, (24)

δB(k + 1) ,
n(k)∑
i=1

aib̌i(k + 1)ři(k + 1)T, (25)

δz(k + 1) ,
n(k)∑
i=1

ai
[
b̌i(k + 1)×

]
ři(k + 1), (26)

δσ(k + 1) ,
n(k)∑
i=1

aib̌i(k + 1)Tři(k + 1). (27)

Finally, the desired quaternion estimate q̂(k+1|k+1) at instant k+1 using information up to instant

k+1 is obtained in the same way as in the QUEST method (see equations (17)-(18)) as the eigenvector

of K(k + 1|k + 1) corresponding to the maximum eigenvalue of the same matrix.

4 Method Evaluation

The attitude motion is simulated with the quaternion kinematic equation [17] excited by a true angular

velocity ω of SB w.r.t. SR that induces a cone motion. The representation in SB of such an angular

velocity is given by [24]

ω(t) =

 −Ωp sin θc cos (Ωpt)

−Ωp sin θc sin (Ωpt)

Ωp (cos θc − 1)

 , (28)

where t is the continuous time, Ωp ∈ R is the precession rate and θc ∈ R is the cone angle.

The vector measurements are simulated using equation (2), taking into account a total of four land-

marks, whose positions are represented in SR by the points P1 = [0.3 0.2 1]T, P2 = [0.5 0.8 1]T, P3 =

[0.7 0.3 1]T, P4 = [0.5 0.5 1]T. Moreover, without loss of generallity, the vehicle’s center of mass is

assumed to be fixed at P = [0.5 0.5 0.4]T. Therefore, assuming that the SR representation of the

vector measurements are noise-free, we have

ř1 =

 −0.2857

−0.4286

0.8571

 , ř2 =

 0

0.4472

0.8944

 , ř3 =

 0.3015

−0.3015

0.9045

 , ř4 =

 0

0

1

 . (29)

6



The parameter values used in the simulation model are all listed in Table 1.

Table 1: Parameters of the ground-truth model.
Sampling time ∆t = 0.05 s

Simulation period ∆t× kf = 10 s

Covariance of the vector measurement errors Ri(k) = 1.6× 10−3I3, ∀i
Covariance of the rate-gyro measurement errors Q(k) = 7.1× 10−7I3
Precession rate Ωp = 60 degree/s

Cone angle θc = 20 degree

Here, we use the REQUEST method reviewed in Subsection 3.2 to estimate the vehicle’s atti-

tude quaternion throughout the coning motion. The weighting factors associated with the vector

measurements are chosen as ai = 1, ∀i.
In order to evaluate the performance of the method, Monte Carlo simulations with 1000 are realized.

The principal Euler angle corresponding to the true attitude error is considered as a figure of merit.

It is given by

ε(k) = acos

(
tr
(
D(q̂(k|k))D(q(k))T

)
− 1

2

)
. (30)

The simulation is repeated for different values of the fadding factor ρ and different number n of

visible landmarks. The sample mean µε and standard deviation σε of ε(k) at the final discrete time

kf for each combination of ρ and n are registered in Table 2.

Table 2: Monte Carlo simulation results. The quantities µε and σε are, respectively, the simple mean
and sample standard deviation of ε(kf ), where kf is the final discrete-time instant.

n ρ (µε, σε)

2 0 (3.95, 1.93)
0.5 (2.42, 1.12)
0.95 (1.05, 0.33)

3 0 (3.40, 1.61)
0.5 (2.13, 0.89)
0.95 (0.98, 0.26)

4 0 (3.16, 1.54)
0.5 (1.98, 0.84)
0.95 (0.96, 0.27)

In Table 1, one can see an improvement in performance as the fadding factor ρ and the number

of visible landmarks n are increased. However, the observed improvement when n is changed from

n = 3 to n = 4 is not significant, which suggest that n = 3 is a good choice. From the equations of the

REQUEST method in Subsection (3.2), we conclude that if ρ = 0, and therefore no past measurements

are considered in the current estimate, this algorithm is degenerated into the QUEST method reviewed

in Subsection 3.1. In this case, we observe the worst performance. Figure 2 shows a time plot of µε(k)

and µε + σε(k) for n = 3 and ρ = 0.95.

It is worth mentioning two important cases that are not shown in Table 2. The first one is when

we consider only n = 1 visible landmark. In this case, the matrix within the brackets in equation (17)

becomes singular and then we cannot extract the attitude estimate from the K matrix. The second

case is when we set the fadding factor in ρ = 1. In this case, there is no fadding factor at all and

thus the attitude estimates show a divergent behavior, as seen in Figure 3. This divergence is due to
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Figure 2: Sample mean and standard deviation of ε for n = 3 and ρ = 0.95.
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Figure 3: Sample mean and standard deviation of ε for n = 4 and ρ = 1.

the time propagation of past vector measurements using noisy rate-gyro measurements; the fadding

factor ρ was introduced in [10] just to avoid such a divergence.

5 Concluding Remarks

The classic Wahba problem was recast here for MAV attitude determination setting the vector mea-

surements as the unit vectors pointing from the optical center of a downward-pointing camera to

landmarks within its field of view. The REQUEST algorithm was chosen here as the solution method

due to its simple implementation and tuning. Moreover, it fits well the problem, since it is originally

formulated in a way that permits a variable number of vector measurements over the time.

In this paper, we brought the formalism on attitude determination from the aerospace area to adapt

it to the MAV literature. The method presented here was evaluated by Monte Carlo simulations, which

showed its effectiveness as well as how its performance varies with respect to the number of visible

landmarkds and the value of a fadding factor parameter.

For future works, we investigate the use of new attitude determination algorithms and prepare

a bench experiment for collecting rate-gyro and camera data using a low-cost single-board Linux

computer, all mounted on a Quanser 3D Hover setup.
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